3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization
Jonathan P. Mailoa (),
Xin Li and
Shengyu Zhang ()
Additional contact information
Jonathan P. Mailoa: Wenzhou University
Xin Li: Tencent
Shengyu Zhang: Tencent
Nature Communications, 2024, vol. 15, issue 1, 1-11
Abstract:
Abstract Ab-initio methods such as density functional theory (DFT) is useful for fundamental atomistic-level study and is widely used across many scientific fields, including for the discovery of electrochemical reaction byproducts. However, many DFT steps may be needed to discover rare electrochemical reaction byproducts, which limits DFT’s scalability. In this work, we demonstrate that it is possible to generate many elementary electrochemical reaction byproducts in-silico using just a small number of ab-initio energy minimization steps if it is done in a multi-scale manner, such as via previously reported tiered tensor transform (3T) method. We first demonstrate the algorithm through a simple example of a complex floppy organic molecule passivator binding onto perovskite solar cell surface defect site. We then demonstrate more complex examples by generating hundreds of electrochemical reaction byproducts in lithium-ion battery liquid electrolyte (many are verified in previous experimental studies), with most trajectories completed within 50–100 DFT steps as opposed to more than 10,000 steps typically utilized in an ab-initio molecular dynamics trajectory. This approach requires no machine learning training data generation and can be directly applied on any new chemistries, making it suitable for ab-initio elementary chemical reaction byproduct investigation when temperature dependence is not required.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-54453-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54453-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-54453-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().