EconPapers    
Economics at your fingertips  
 

Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus)

Paris Veltsos, Luis J. Madrigal-Roca and John K. Kelly ()
Additional contact information
Paris Veltsos: University of Kansas
Luis J. Madrigal-Roca: University of Kansas
John K. Kelly: University of Kansas

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Chromosomal inversions have been implicated in a remarkable range of natural phenomena, but it remains unclear how much they contribute to standing genetic variation. Here, we evaluate 64 inversions that segregate within a single natural population of the yellow monkeyflower (Mimulus guttatus). Nucleotide diversity patterns confirm low internal variation for the derived orientation (predicted by recent origin), elevated diversity between orientations (predicted by natural selection), and localized fluctuations (predicted by gene flux). Sequence divergence between orientations varies idiosyncratically by position, not following the suspension bridge pattern predicted if the breakpoints are the targets of selection. Genetic variation in gene expression is not inflated close to inversion breakpoints but is clearly partitioned between orientations. Like sequence variation, the pattern of expression variation suggests that the capture of coadapted alleles is more important than the breakpoints for the fitness effects of inversions. This work confirms several evolutionary predictions for inversion polymorphisms, but clarity emerges only by synthesizing estimates across many loci.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54534-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54534-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54534-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54534-1