EconPapers    
Economics at your fingertips  
 

Human single cell RNA-sequencing reveals a targetable CD8+ exhausted T cell population that maintains mouse low-grade glioma growth

Rasha Barakat, Jit Chatterjee, Rui Mu, Xuanhe Qi, Xingxing Gu, Igor Smirnov, Olivia Cobb, Karen Gao, Angelica Barnes, Jonathan Kipnis and David H. Gutmann ()
Additional contact information
Rasha Barakat: Washington University School of Medicine
Jit Chatterjee: Washington University School of Medicine
Rui Mu: Washington University School of Medicine
Xuanhe Qi: Washington University School of Medicine
Xingxing Gu: Washington University School of Medicine
Igor Smirnov: Washington University School of Medicine
Olivia Cobb: Washington University School of Medicine
Karen Gao: Washington University School of Medicine
Angelica Barnes: Washington University School of Medicine
Jonathan Kipnis: Washington University School of Medicine
David H. Gutmann: Washington University School of Medicine

Nature Communications, 2024, vol. 15, issue 1, 1-16

Abstract: Abstract In solid cancers, T cells typically function as cytotoxic effectors to limit tumor growth, prompting therapies that capitalize upon this antineoplastic property (immune checkpoint inhibition; ICI). Unfortunately, ICI treatments have been largely ineffective for high-grade brain tumors (gliomas; HGGs). Leveraging several single-cell RNA sequencing datasets, we report greater CD8+ exhausted T cells in human pediatric low-grade gliomas (LGGs) relative to adult and pediatric HGGs. Using several preclinical mouse LGG models (Nf1-OPG mice), we show that these PD1+/TIGIT+ CD8+ exhausted T cells are restricted to the tumor tissue, where they express paracrine factors necessary for OPG growth. Importantly, ICI treatments with α-PD1 and α-TIGIT antibodies attenuate Nf1-OPG tumor proliferation through suppression of two cytokine (Ccl4 and TGFβ)-mediated mechanisms, rather than by T cell-mediated cytotoxicity, as well as suppress monocyte-controlled T cell chemotaxis. Collectively, these findings establish a previously unrecognized function for CD8+ exhausted T cells as specialized regulators of LGG maintenance.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54569-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54569-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54569-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54569-4