Direct low concentration CO2 electroreduction to multicarbon products via rate-determining step tuning
Liangyiqun Xie,
Yanming Cai,
Yujing Jiang,
Meikun Shen,
Jason Chun-Ho Lam,
Jun-jie Zhu and
Wenlei Zhu ()
Additional contact information
Liangyiqun Xie: Nanjing University
Yanming Cai: Nanjing University
Yujing Jiang: Nanjing University
Meikun Shen: Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon
Jason Chun-Ho Lam: Kowloon Tong
Jun-jie Zhu: Nanjing University
Wenlei Zhu: Nanjing University
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Direct converting low concentration CO2 in industrial exhaust gases to high-value multi-carbon products via renewable-energy-powered electrochemical catalysis provides a sustainable strategy for CO2 utilization with minimized CO2 separation and purification capital and energy cost. Nonetheless, the electrocatalytic conversion of dilute CO2 into value-added chemicals (C2+ products, e.g., ethylene) is frequently impeded by low CO2 conversion rate and weak carbon intermediates’ surface adsorption strength. Here, we fabricate a range of Cu catalysts comprising fine-tuned Cu(111)/Cu2O(111) interface boundary density crystal structures aimed at optimizing rate-determining step and decreasing the thermodynamic barriers of intermediates’ adsorption. Utilizing interface boundary engineering, we attain a Faradaic efficiency of (51.9 ± 2.8) % and a partial current density of (34.5 ± 6.4) mA·cm−2 for C2+ products at a dilute CO2 feed condition (5% CO2 v/v), comparing to the state-of-art low concentration CO2 electrolysis. In contrast to the prevailing belief that the CO2 activation step ( $${{CO}}_{2}+{e}^{-}+\, * \,\to {}^{ * }{CO}_{2}^{-}$$ C O 2 + e − + * → C O 2 − * ) governs the reaction rate, we discover that, under dilute CO2 feed conditions, the rate-determining step shifts to the generation of *COOH ( $${}^{ * } {{CO}}_{2}^{-}+{H}_{2}O\to {}^{ * } {COOH}+{{OH}}^{-}({aq})$$ C O 2 − * + H 2 O → C * O O H + O H − ( a q ) ) at the Cu0/Cu1+ interface boundary, resulting in a better C2+ production performance.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-54590-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54590-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-54590-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().