EconPapers    
Economics at your fingertips  
 

Engineering enzyme conformation within liquid-solid hybrid microreactors for enhanced continuous-flow biocatalysis

Xiaoting Hao, Shuo Wang, Xiaoming Zhang (), Zhiqiang Ma, Ming Zhang, Hu Shi () and Hengquan Yang ()
Additional contact information
Xiaoting Hao: Shanxi University
Shuo Wang: Shanxi University
Xiaoming Zhang: Shanxi University
Zhiqiang Ma: Shanxi University
Ming Zhang: Shanxi University
Hu Shi: Shanxi University
Hengquan Yang: Shanxi University

Nature Communications, 2024, vol. 15, issue 1, 1-13

Abstract: Abstract The artificial engineering of an enzyme’s structural conformation and dynamic properties to promote its catalytic activity and stability outside cellular environments is highly pursued in industrial biotechnology. Here, we describe an elegant strategy of combining the rationally designed liquid-solid hybrid microreactor with a tailor-made polyethylene glycol functional ionic liquid (PEG-IL) microenvironment to exercise a high level of control over the configuration of enzymes for practical continuous-flow biocatalysis. As exemplified by a lipase driven kinetic resolution reaction, the obtained system exhibits a 2.70 to 30.35-fold activity enhancement compared to their batch or traditional IL-based counterparts. Also, our results demonstrate that the thermal stability of encapsulated lipase can be significantly strengthened in the presence of PEG groups, showcasing a long-term continuous-flow stability even up to 1000 h at evaluated temperature of 60 oC. Through systematic experiment and molecular dynamics simulation studies, the conformational changes of the active site cavity in the modified lipases are correlated with enzymatic properties alteration, and the pronounced effects of PEG-groups in stabilizing enzyme’s secondary structures by delaying unfolding at elevated temperatures are identified. We believe that this study will guide the design of high-performance enzymatic systems, promoting their utilization in real-world biocatalysis applications.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54725-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54725-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54725-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54725-w