Training all-mechanical neural networks for task learning through in situ backpropagation
Shuaifeng Li and
Xiaoming Mao ()
Additional contact information
Shuaifeng Li: University of Michigan
Xiaoming Mao: University of Michigan
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Recent advances unveiled physical neural networks as promising machine learning platforms, offering faster and more energy-efficient information processing. Compared with extensively-studied optical neural networks, the development of mechanical neural networks remains nascent and faces significant challenges, including heavy computational demands and learning with approximate gradients. Here, we introduce the mechanical analogue of in situ backpropagation to enable highly efficient training of mechanical neural networks. We theoretically prove that the exact gradient can be obtained locally, enabling learning through the immediate vicinity, and we experimentally demonstrate this backpropagation to obtain gradient with high precision. With the gradient information, we showcase the successful training of networks in simulations for behavior learning and machine learning tasks, achieving high accuracy in experiments of regression and classification. Furthermore, we present the retrainability of networks involving task-switching and damage, demonstrating the resilience. Our findings, which integrate the theory for training mechanical neural networks and experimental and numerical validations, pave the way for mechanical machine learning hardware and autonomous self-learning material systems.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-54849-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54849-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-54849-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().