EconPapers    
Economics at your fingertips  
 

Mimicking on-water surface synthesis through micellar interfaces

Anupam Prasoon, Shaik Ghouse, Nguyen Ngan Nguyen, Hyejung Yang, Alina Müller, Chandrasekhar Naisa, Silvia Paasch, Abdallh Herbawe, Muhannad Al Aiti, Gianaurelio Cuniberti, Eike Brunner and Xinliang Feng ()
Additional contact information
Anupam Prasoon: Technische Universität Dresden
Shaik Ghouse: Technische Universität Dresden
Nguyen Ngan Nguyen: Technische Universität Dresden
Hyejung Yang: Technische Universität Dresden
Alina Müller: Technische Universität Dresden
Chandrasekhar Naisa: Technische Universität Dresden
Silvia Paasch: Technische Universität Dresden
Abdallh Herbawe: Technische Universität Dresden
Muhannad Al Aiti: Technische Universität Dresden
Gianaurelio Cuniberti: Technische Universität Dresden
Eike Brunner: Technische Universität Dresden
Xinliang Feng: Technische Universität Dresden

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract The chemistry of the on-water surface, characterized by enhanced reactivity, distinct selectivity, and confined reaction geometry, offers significant potential for chemical and materials syntheses. However, the utilization of on-water surface synthesis is currently limited by the requirement for a stable air-water interface, which restricts its broader synthetic applications. In this work, we present a approach that mimics on-water surface chemistry using micelles. This method involves the self-assembly of charged surfactant molecules beyond their critical micelle concentration (CMC), forming micellar structures that simulate the air-water interface. This creates an environment conducive to chemical reactions, featuring a hydrophobic core and surrounding water layer. Utilizing such mimicking on-water surface with the assembly of porphyrin-based monomers featuring distinct confined geometry and preferential orientations, we achieve reactivity and selectivity (≥99%) in fourteen different reversible and irreversible chemical reactions. Extending the versatility of this approach, we further demonstrate its applicability to two-dimensional (2D) polymerization on micellar interfaces, successfully achieving the aqueous synthesis of crystalline 2D polymer thin layers. This strategy significantly broadens the accessibility of on-water surface chemistry for a wide range of chemical syntheses.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54962-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54962-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54962-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54962-z