Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction
Wenyuan Lyu,
Yang Liu,
Datong Chen,
Fengliang Wang () and
Yingwei Li ()
Additional contact information
Wenyuan Lyu: South China University of Technology
Yang Liu: Guangdong University of Petrochemical Technology, Maoming
Datong Chen: South China University of Technology
Fengliang Wang: South China University of Technology
Yingwei Li: South China University of Technology
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Photocatalytic conversion of CO2 into syngas is highly appealing, yet still suffers from the undesirable product yield due to the sluggish carrier transfer and the uncontrollable affinity between catalytic sites and intermediates. Here we report the fabrication of Co sites with tunable electron localization capability on two dimensional (2D) nanosheets assembled three dimensional (3D) ordered macroporous framework (3DOM-NS). The as-prepared Co-based 3DOM-NS catalysts exhibit attractive photocatalytic performances toward CO2 reduction, among which the cobalt sulfide one (3DOM Co-SNS) shows the highest syngas generation rate up to 347.3 μmol h−1 under the irradiation of visible light and delivers a remarkable catalytic activity (1150.7 μmol h−1) in a flow reaction system under natural sunlight. Mechanism studies reveal that the high electron localization of metal sites in 3DOM Co-SNS strengthens the interaction between Co and HCOO* via the orbital interactions of dyz/dxz-p and s-s, thus facilitating the cleaving process of C-O bond. Additionally, the ordered macroporous framework with nanosheet subunits elevates the transfer efficiency of photoexcited electrons, which contributes to its high activity.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-54988-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54988-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-54988-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().