A coopetition-driven strategy of parallel/perpendicular aromatic stacking enabling metastable supramolecular polymerization
Zhao Gao,
Xuxu Xie,
Juan Zhang,
Wei Yuan,
Hongxia Yan and
Wei Tian ()
Additional contact information
Zhao Gao: Northwestern Polytechnical University
Xuxu Xie: Northwestern Polytechnical University
Juan Zhang: Northwestern Polytechnical University
Wei Yuan: Nanyang Technological University
Hongxia Yan: Northwestern Polytechnical University
Wei Tian: Northwestern Polytechnical University
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Metastable supramolecular polymerization under kinetic control has recently been recognized as a closer way to biosystem than thermodynamic process. While impressive works on metastable supramolecular systems have been reported, the library of available non-covalent driving modes is still small and a simple yet versatile solution is highly desirable to design for easily regulating the energy landscapes of metastable aggregation. Herein, we propose a coopetition-driven metastability strategy for parallel/perpendicular aromatic stacking to construct metastable supramolecular polymers derived from a class of simple monomers consisting of lateral indoles and aromatic core. By subtly increasing the stacking strength of aromatic cores from phenyl to anthryl, the parallel face-to-face stacked aggregates are competitively formed as metastable products, which spontaneously transform into thermodynamically favorable species through the cooperativity of perpendicular edge-to-face stacking and parallel offset stacking. The slow kinetic-to-thermodynamic transformation could be accelerated by adding seeds for realizing the desired living supramolecular polymerization. Besides, this transformation of parallel/perpendicular aromatic stacking accompanied by time-dependent emission change from red to yellow is employed to dynamic cell imaging, largely avoiding the background interferences. The coopetition relationship of different aromatic stacking for metastable supramolecular systems is expected to serve as an effective strategy towards pathway-controlled functional materials.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55106-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55106-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55106-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().