EconPapers    
Economics at your fingertips  
 

A family of NADPH/NADP+ biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes

Marie Scherschel, Jan-Ole Niemeier, Lianne J. H. C. Jacobs, Markus D. A. Hoffmann, Anika Diederich, Christopher Bell, Pascal Höhne, Sonja Raetz, Johanna B. Kroll, Janina Steinbeck, Sophie Lichtenauer, Jan Multhoff, Jannik Zimmermann, Tanmay Sadhanasatish, R. Alexander Rothemann, Carsten Grashoff, Joris Messens, Emmanuel Ampofo, Matthias W. Laschke, Jan Riemer, Leticia Prates Roma, Markus Schwarzländer () and Bruce Morgan ()
Additional contact information
Marie Scherschel: Saarland University
Jan-Ole Niemeier: Schlossplatz 8
Lianne J. H. C. Jacobs: University of Cologne
Markus D. A. Hoffmann: Saarland University
Anika Diederich: Saarland University
Christopher Bell: Schlossplatz 8
Pascal Höhne: Saarland University
Sonja Raetz: Schlossplatz 8
Johanna B. Kroll: Schlossplatz 8
Janina Steinbeck: Schlossplatz 8
Sophie Lichtenauer: Schlossplatz 8
Jan Multhoff: Schlossplatz 8
Jannik Zimmermann: Saarland University
Tanmay Sadhanasatish: Schlossplatz 5
R. Alexander Rothemann: University of Cologne
Carsten Grashoff: Schlossplatz 5
Joris Messens: Vlaams Instituut voor Biotechnologie
Emmanuel Ampofo: Saarland University
Matthias W. Laschke: Saarland University
Jan Riemer: University of Cologne
Leticia Prates Roma: Saarland University
Markus Schwarzländer: Schlossplatz 8
Bruce Morgan: Saarland University

Nature Communications, 2024, vol. 15, issue 1, 1-20

Abstract: Abstract The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-55302-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55302-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-55302-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55302-x