EconPapers    
Economics at your fingertips  
 

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas

Ye Ju, Chunyue Ma, Ling Ding, Mingyue Shi, Xia Wang, Dongbei Wu, Qing Wu (), Xingjun Qin () and Qigang Wang ()
Additional contact information
Ye Ju: Tongji University
Chunyue Ma: Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology
Ling Ding: Tongji University
Mingyue Shi: Tongji University
Xia Wang: Tongji University
Dongbei Wu: Tongji University
Qing Wu: Tongji University
Xingjun Qin: Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology
Qigang Wang: Tongji University

Nature Communications, 2024, vol. 15, issue 1, 1-19

Abstract: Abstract Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage. In male New Zealand rabbit POF models, the JHA demonstrates strong adhesion and fluid-tight sealing, and maintained firm sealing for over 3 days without any decreased signs under a normal diet. After 12 days, both extraoral cutaneous and mucosal wounds achieved complete closure, with mechanical strengths comparable to normal tissues. Similar therapeutic efficacy was also confirmed in male beagle dog POF models. Thus, the proposed JHA hydrogel shows great potential for deep wound sealing and providing mechanical support to assist healing in penetrating fistulas and other injuries.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-55303-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55303-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-55303-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55303-w