EconPapers    
Economics at your fingertips  
 

Human-level control through deep reinforcement learning

Volodymyr Mnih, Koray Kavukcuoglu (), David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg and Demis Hassabis ()
Additional contact information
Volodymyr Mnih: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Koray Kavukcuoglu: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
David Silver: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Andrei A. Rusu: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Joel Veness: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Marc G. Bellemare: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Alex Graves: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Martin Riedmiller: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Andreas K. Fidjeland: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Georg Ostrovski: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Stig Petersen: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Charles Beattie: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Amir Sadik: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Ioannis Antonoglou: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Helen King: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Dharshan Kumaran: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Daan Wierstra: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Shane Legg: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK
Demis Hassabis: Google DeepMind, 5 New Street Square, London EC4A 3TW, UK

Nature, 2015, vol. 518, issue 7540, 529-533

Abstract: An artificial agent is developed that learns to play a diverse range of classic Atari 2600 computer games directly from sensory experience, achieving a performance comparable to that of an expert human player; this work paves the way to building general-purpose learning algorithms that bridge the divide between perception and action.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (464)

Downloads: (external link)
https://www.nature.com/articles/nature14236 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:518:y:2015:i:7540:d:10.1038_nature14236

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature14236

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-27
Handle: RePEc:nat:nature:v:518:y:2015:i:7540:d:10.1038_nature14236