EconPapers    
Economics at your fingertips  
 

Sedimentary structures discriminations with hyperspectral imaging on sediment cores

Kévin Jacq, Rapuc William, Benoit Alexandre, Coquin Didier, Fanget Bernard, Yves Perrette, Pierre Sabatier, Wilhelm Bruno, Debret Maxime and Fabien Arnaud

No 4ue5s, Earth Arxiv from Center for Open Science

Abstract: Hyperspectral imaging (HSI) is a non-destructive high-resolution sensor, which is currently under significant development to analyze geological areas with remote devices or natural samples in a laboratory. In both cases, the hyperspectral image provides several sedimentary structures that need to be separated to temporally and spatially describe the sample. Sediment sequences are composed of successive deposits (strata, homogenite, flood) that can be visible or not depending on sample properties. The classical methods to identify them are time-consuming, have a low spatial resolution (millimeter), and are generally based on a naked-eye counting. In this study, we propose to compare several supervised classification algorithms for the discrimination of sedimentological structures on lake sediments. Instantaneous events in lake sediments are generally linked to extreme geodynamical events (e.g., floods, earthquakes), their identification and counting are essential to understand long-term fluctuations and improve hazard assessments. This is done by reconstructing a chronicle of event layer occurrence, including estimation of deposit thicknesses. Here we applied two hyperspectral imaging sensors (Visible Near-Infrared VNIR, 60 μm, 400-1000 nm; Short Wave Infrared SWIR, 200 μm, 1000-2500 nm) on three sediment cores from different lake systems. We highlight that the SWIR sensor is the optimal one to create robust classification models with discriminant analyses. Indeed, the VNIR sensor is impacted by the surface reliefs and structures that are not in the learning set, which lead to miss-classification. These observations are also valid for the combined sensor (VNIR-SWIR). Several spatial and spectral pre-processing were also compared and allowed to highlight discriminant information specific to a sample and a sensor. These works show that the combined use of hyperspectral imaging and machine learning improves the characterization of sedimentary structures in laboratory conditions.

Date: 2020-07-17
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://osf.io/download/5f0dea81e8dcdd0057ef477c/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:osf:eartha:4ue5s

DOI: 10.31219/osf.io/4ue5s

Access Statistics for this paper

More papers in Earth Arxiv from Center for Open Science
Bibliographic data for series maintained by OSF ().

 
Page updated 2025-03-19
Handle: RePEc:osf:eartha:4ue5s