Mediation and Moderation in Statistical Network Models
Scott W Duxbury
No 9bs4u, SocArXiv from Center for Open Science
Abstract:
Statistical network methods have grown increasingly popular in the social sciences. However, like other nonlinear probability models, statistical network model parameters can only be identified to a scale and cannot be compared between groups or models fit to the same network. This study addresses these issues by developing methods for mediation and moderation analyses in exponential random graph models (ERGM). It first discusses ERGM as an autologistic regression to illustrate that ERGM estimates can be affected by unobserved heterogeneity. Second, it develops methods for mediation analysis for both discrete and continuous mediators. Third, it provides recommendations and methods for interpreting interactions in ERGM. Finally, it considers scenarios where interactions are implicated in mediation analysis. The methodological discussion is accompanied with empirical applications and extensions to other classes of statistical network models are discussed.
Date: 2019-07-17
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://osf.io/download/5d2f471a835aff001953f7b0/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:osf:socarx:9bs4u
DOI: 10.31219/osf.io/9bs4u
Access Statistics for this paper
More papers in SocArXiv from Center for Open Science
Bibliographic data for series maintained by OSF ().