Visualization Strategies for Regression Estimates with Randomization Inference
Marshall A. Taylor
Additional contact information
Marshall A. Taylor: New Mexico State University
No bsd7g, SocArXiv from Center for Open Science
Abstract:
Coefficient plots are a popular tool for visualizing regression estimates. The appeal of these plots is that they visualize confidence intervals around the estimates and generally center the plot around zero, meaning that any estimate that crosses zero is statistically non-significant at at least the alpha-level around which the confidence intervals are constructed. For models with statistical significance levels determined via randomization models of inference and for which there is no standard error or confidence intervals for the estimate itself, these plots appear less useful. In this paper, I illustrate a variant of the coefficient plot for regression models with p-values constructed using permutation tests. These visualizations plot each estimate's p-value and its associated confidence interval in relation to a specified alpha-level. These plots can help the analyst interpret and report both the statistical and substantive significance of their models. Illustrations are provided using a nonprobability sample of activists and participants at a 1962 anti-Communism school.
Date: 2019-11-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://osf.io/download/5dc43b73bb21c7000d89f4a3/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:osf:socarx:bsd7g
DOI: 10.31219/osf.io/bsd7g
Access Statistics for this paper
More papers in SocArXiv from Center for Open Science
Bibliographic data for series maintained by OSF ().