EconPapers    
Economics at your fingertips  
 

Simple tiered classifiers

Peter Hall, Yingcun Xia and Jing-Hao Xue

Biometrika, 2013, vol. 100, issue 2, 431-445

Abstract: In this paper we propose simple, general tiered classifiers for relatively complex data. Empirical studies on real and simulated data show that three two-tier classifiers, which are respective extensions of linear discriminant analysis, linear logistic regression and support vector machines, can reduce noticeably the relatively high misclassification error of their original single-tier counterparts, without significantly increasing computational labour. Copyright 2013, Oxford University Press.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass086 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:2:p:431-445

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:100:y:2013:i:2:p:431-445