Variable selection in regression with compositional covariates
Wei Lin,
Pixu Shi,
Rui Feng and
Hongzhe Li
Biometrika, 2014, vol. 101, issue 4, 785-797
Abstract:
Motivated by research problems arising in the analysis of gut microbiome and metagenomic data, we consider variable selection and estimation in high-dimensional regression with compositional covariates. We propose an ℓ1 regularization method for the linear log-contrast model that respects the unique features of compositional data. We formulate the proposed procedure as a constrained convex optimization problem and introduce a coordinate descent method of multipliers for efficient computation. In the high-dimensional setting where the dimensionality grows at most exponentially with the sample size, model selection consistency and $\ell _{\infty }$ bounds for the resulting estimator are established under conditions that are mild and interpretable for compositional data. The numerical performance of our method is evaluated via simulation studies and its usefulness is illustrated by an application to a microbiome study relating human body mass index to gut microbiome composition.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu031 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:4:p:785-797.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().