Joint sufficient dimension reduction and estimation of conditional and average treatment effects
Ming-Yueh Huang and
Kwun Chuen Gary Chan
Biometrika, 2017, vol. 104, issue 3, 583-596
Abstract:
SummaryThe estimation of treatment effects based on observational data usually involves multiple confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify the definition of a central subspace that is relevant for the efficient estimation of average treatment effects. A criterion is then proposed to simultaneously estimate the structural dimension, the basis matrix of the joint central subspace, and the optimal bandwidth for estimating the conditional treatment effects. The method can easily be implemented by forward selection. Semiparametric efficient estimation of average treatment effects can be achieved by averaging the conditional treatment effects with a different data-adaptive bandwidth to ensure optimal undersmoothing. Asymptotic properties of the estimated joint central subspace and the corresponding estimator of average treatment effects are studied. The proposed methods are applied to a nutritional study, where the covariate dimension is reduced from 11 to an effective dimension of one.
Keywords: Forward selection; High-order kernel; Joint central subspace; Optimal bandwidth; Semiparametric efficiency; Undersmoothing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx028 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:3:p:583-596.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().