EconPapers    
Economics at your fingertips  
 

Uniform designs limit aliasing

Fred J. Hickernell

Biometrika, 2002, vol. 89, issue 4, 893-904

Abstract: When fitting a linear regression model to data, aliasing can adversely affect the estimates of the model coefficients and the decision of whether or not a term is significant. Optimal experimental designs give efficient estimators assuming that the true form of the model is known, while robust experimental designs guard against inaccurate estimates caused by model misspecification. Although it is rare for a single design to be both maximally efficient and robust, it is shown here that uniform designs limit the effects of aliasing to yield reasonable efficiency and robustness together. Aberration and resolution measure how well fractional factorial designs guard against the effects of aliasing. Here it is shown that the definitions of aberration and resolution may be generalised to other types of design using the discrepancy. Copyright Biometrika Trust 2002, Oxford University Press.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (24)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:4:p:893-904

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:89:y:2002:i:4:p:893-904