Efficient estimation of covariance selection models
Frederick Wong
Biometrika, 2003, vol. 90, issue 4, 809-830
Abstract:
A Bayesian method is proposed for estimating an inverse covariance matrix from Gaussian data. The method is based on a prior that allows the off-diagonal elements of the inverse covariance matrix to be zero, and in many applications results in a parsimonious parameterisation of the covariance matrix. No assumption is made about the structure of the corresponding graphical model, so the method applies to both nondecomposable and decomposable graphs. All the parameters are estimated by model averaging using an efficient Metropolis--Hastings sampling scheme. A simulation study demonstrates that the method produces statistically efficient estimators of the covariance matrix, when the inverse covariance matrix is sparse. The methodology is illustrated by applying it to three examples that are high-dimensional relative to the sample size. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (41)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:4:p:809-830
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().