Principal Hessian Directions for regression with measurement error
Heng-Hui Lue
Biometrika, 2004, vol. 91, issue 2, 409-423
Abstract:
We consider a nonlinear regression problem with predictors with measurement error. We assume that the response is related to unknown linear combinations of a p-dimensional predictor vector through an unknown link function. Instead of observing the predictors, we observe a surrogate vector with the property that its expectation is linearly related to the predictor vector with constant variance. We use an important linear transformation of the surrogates. Based on the transformed variables, we develop the modified Principal Hessian Directions method for estimating the subspace of the effective dimension-reduction space. We derive the asymptotic variances of the modified Principal Hessian Directions estimators. Several examples are reported and comparisons are made with the sliced inverse regression method of Carroll & Li (1992). Copyright Biometrika Trust 2004, Oxford University Press.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (3)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:2:p:409-423
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().