Covariate-adjusted regression
Damla Şenturk and
Hans-Georg Muller
Biometrika, 2005, vol. 92, issue 1, 75-89
Abstract:
We introduce covariate-adjusted regression for situations where both predictors and response in a regression model are not directly observable, but are contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate. We demonstrate how the regression coefficients can be estimated by establishing a connection to varying-coefficient regression. The proposed covariate-adjustment method is illustrated with an analysis of the regression of plasma fibrinogen concentration as response on serum transferrin level as predictor for 69 haemodialysis patients. In this example, both response and predictor are thought to be influenced in a multiplicative fashion by body mass index. A bootstrap hypothesis test enables us to test the significance of the regression parameters. We establish consistency and convergence rates of the parameter estimators for this new covariate-adjusted regression model. Simulation studies demonstrate the efficacy of the proposed method. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.1.75 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:1:p:75-89
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().