Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure
Guozhi Gao and
Anastasios A. Tsiatis
Biometrika, 2005, vol. 92, issue 4, 875-891
Abstract:
We consider the problem of estimating the regression coefficients in a competing risks model, where the relationship between the cause-specific hazard for the cause of interest and covariates is described using linear transformation models and when cause of failure is missing at random for a subset of individuals. Using the theory of Robins et al. (1994) for missing data problems and the approach of Chen et al. (2002) for estimating regression coefficients for linear transformation models, we derive augmented inverse probability weighted complete-case estimators for the regression coefficients that are doubly robust. Simulations demonstrate the relevance of the theory in finite samples. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.4.875 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:4:p:875-891
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().