Posterior propriety and computation for the Cox regression model with applications to missing covariates
Ming-Hui Chen,
Joseph G. Ibrahim and
Qi-Man Shao
Biometrika, 2006, vol. 93, issue 4, 791-807
Abstract:
In this paper, we carry out an in-depth theoretical investigation of Bayesian inference for the Cox regression model. We establish necessary and sufficient conditions for posterior propriety of the regression coefficient, β, in Cox's partial likelihood, which can be obtained as the limiting marginal posterior distribution of β through the specification of a gamma process prior for the cumulative baseline hazard and a uniform improper prior for β. We also examine necessary and sufficient conditions for posterior propriety of the regression coefficients, β, using full likelihood Bayesian approaches in which a gamma process prior is specified for the cumulative baseline hazard. We examine characterisation of posterior propriety under completely observed data settings as well as for settings involving missing covariates. Latent variables are introduced to facilitate a straightforward Gibbs sampling scheme in the Bayesian computation. A real dataset is presented to illustrate the proposed methodology. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.4.791 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:4:p:791-807
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().