Small area estimation when auxiliary information is measured with error
Lynn M. R. Ybarra and
Sharon L. Lohr
Biometrika, 2008, vol. 95, issue 4, 919-931
Abstract:
Small area estimation methods typically combine direct estimates from a survey with predictions from a model in order to obtain estimates of population quantities with reduced mean squared error. When the auxiliary information used in the model is measured with error, using a small area estimator such as the Fay--Herriot estimator while ignoring measurement error may be worse than simply using the direct estimator. We propose a new small area estimator that accounts for sampling variability in the auxiliary information, and derive its properties, in particular showing that it is approximately unbiased. The estimator is applied to predict quantities measured in the U.S. National Health and Nutrition Examination Survey, with auxiliary information from the U.S. National Health Interview Survey. Copyright 2008, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn048 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:4:p:919-931
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().