EconPapers    
Economics at your fingertips  
 

Sinh-arcsinh distributions

M. C. Jones and Arthur Pewsey

Biometrika, 2009, vol. 96, issue 4, 761-780

Abstract: We introduce the sinh-arcsinh transformation and hence, by applying it to a generating distribution with no parameters other than location and scale, usually the normal, a new family of sinh-arcsinh distributions. This four-parameter family has symmetric and skewed members and allows for tailweights that are both heavier and lighter than those of the generating distribution. The central place of the normal distribution in this family affords likelihood ratio tests of normality that are superior to the state-of-the-art in normality testing because of the range of alternatives against which they are very powerful. Likelihood ratio tests of symmetry are also available and are very successful. Three-parameter symmetric and asymmetric subfamilies of the full family are also of interest. Heavy-tailed symmetric sinh-arcsinh distributions behave like Johnson S U distributions, while their light-tailed counterparts behave like sinh-normal distributions, the sinh-arcsinh family allowing a seamless transition between the two, via the normal, controlled by a single parameter. The sinh-arcsinh family is very tractable and many properties are explored. Likelihood inference is pursued, including an attractive reparameterization. Illustrative examples are given. A multivariate version is considered. Options and extensions are discussed. Copyright 2009, Oxford University Press.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp053 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:4:p:761-780

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:761-780