EconPapers    
Economics at your fingertips  
 

Penalized high-dimensional empirical likelihood

Cheng Yong Tang and Chenlei Leng

Biometrika, 2010, vol. 97, issue 4, 905-920

Abstract: We propose penalized empirical likelihood for parameter estimation and variable selection for problems with diverging numbers of parameters. Our results are demonstrated for estimating the mean vector in multivariate analysis and regression coefficients in linear models. By using an appropriate penalty function, we showthat penalized empirical likelihood has the oracle property. That is, with probability tending to 1, penalized empirical likelihood identifies the true model and estimates the nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated by testing hypotheses and constructing confidence regions. Numerical simulations confirm our theoretical findings. Copyright 2010, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq057 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:4:p:905-920

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:905-920