EconPapers    
Economics at your fingertips  
 

Joint estimation of multiple graphical models

Jian Guo, Elizaveta Levina, George Michailidis and Ji Zhu

Biometrika, 2011, vol. 98, issue 1, 1-15

Abstract: Gaussian graphical models explore dependence relationships between random variables, through the estimation of the corresponding inverse covariance matrices. In this paper we develop an estimator for such models appropriate for data from several graphical models that share the same variables and some of the dependence structure. In this setting, estimating a single graphical model would mask the underlying heterogeneity, while estimating separate models for each category does not take advantage of the common structure. We propose a method that jointly estimates the graphical models corresponding to the different categories present in the data, aiming to preserve the common structure, while allowing for differences between the categories. This is achieved through a hierarchical penalty that targets the removal of common zeros in the inverse covariance matrices across categories. We establish the asymptotic consistency and sparsity of the proposed estimator in the high-dimensional case, and illustrate its performance on a number of simulated networks. An application to learning semantic connections between terms from webpages collected from computer science departments is included. Copyright 2011, Oxford University Press.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (51)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq060 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:1:p:1-15

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:1-15