EconPapers    
Economics at your fingertips  
 

Combining counterfactual outcomes and ARIMA models for policy evaluation

Fiammetta Menchetti, Fabrizio Cipollini and Fabrizia Mealli

The Econometrics Journal, 2023, vol. 26, issue 1, 1-24

Abstract: SummaryThe Rubin Causal Model (RCM) is a framework that allows to define the causal effect of an intervention as a contrast of potential outcomes. In recent years, several methods have been developed under the RCM to estimate causal effects in time series settings. None of these makes use of autoregressive integrated moving average (ARIMA) models, which are instead very common in the econometrics literature. In this paper, we propose a novel approach, named Causal-ARIMA (C-ARIMA), to define and estimate the causal effect of an intervention in observational time series settings under the RCM. We first formalise the assumptions enabling the definition, the estimation and the attribution of the effect to the intervention. We then check the validity of the proposed method with a simulation study. In the empirical application, we use C-ARIMA to assess the causal effect of a permanent price reduction on supermarket sales. The CausalArima R package provides an implementation of the proposed approach.

Keywords: ARIMA; causal inference; intervention analysis; potential outcomes (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utac024 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:26:y:2023:i:1:p:1-24.

Access Statistics for this article

The Econometrics Journal is currently edited by Jaap Abbring

More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:emjrnl:v:26:y:2023:i:1:p:1-24.