EconPapers    
Economics at your fingertips  
 

Thermal energy storage: the role of the heat pipe in performance enhancement

David A. Reay

International Journal of Low-Carbon Technologies, 2015, vol. 10, issue 2, 99-109

Abstract: Heat pipes and thermosyphons—devices of high effective thermal conductivity—have been studied for many years for enhancing the performance of solid, liquid and phase change material (PCM) heat stores. However, as the applications of heat storage widen, from micro-electronics thermal control to concentrated solar heat storage and vehicle thermal management, and even for chemical reactor isothermalization, the challenges facing heat storage increasingly are moving from those associated with the ‘standard’ diurnal storage, in itself a problem for low thermal conductivity materials, to response times measured in a few hours or even minutes. While high thermal conductivity metals such as foams can be impregnated with a PCM, for example, to increase local conductivity, the rapid heat input and removal necessitates a more radical approach—heat pipes, possibly with feedback control, with innovative PCM interfaces. This paper reviews the use of heat pipes in conventional and rapid response PCM and liquid or cold storage applications and introduces some novel concepts that might overcome current limitations.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctv009 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:10:y:2015:i:2:p:99-109.

Access Statistics for this article

International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat

More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:ijlctc:v:10:y:2015:i:2:p:99-109.