Cooling, heating and power system
Tzu-Chia Chen,
Rustam Rashidov,
Mark Treve,
Ahmed B Mahdi,
Ali Thaeer Hammid,
Abduladheem Turki Jalil and
Ali Shamel
International Journal of Low-Carbon Technologies, 2023, vol. 18, 1-12
Abstract:
Systems of cogeneration of cooling, heating and electric power with renewable energy sources are a very suitable solution for the independency of fossil fuels and reducing the emission of environmental pollutants. In this research, an internal combustion engine with a boiler and a linear parabolic concentrating collector has been used to realize the production of electrical and thermal energy. That the internal combustion engine is responsible for the production of electric power, which is responsible for the thermal energy by the concentrated linear collector with the boiler and the heat exchanger. Due to the need for thermal energy at different times, a thermal storage tank has been used in such a way that the thermal energy produced by the solar collector and boiler is stored in the tank to supply the load at the required times. The results show that the total cost of final products for one day of the hottest month of summer in the proposed thermal power plant with fossil fuel will be $69.3 and $63.5, respectively, and for 1 day of the coldest month of winter, the total cost of producing final products in the proposed and fossil system will be $31.6 and $28.5, respectively.
Keywords: environmental analysis; linear parabolic collector; heating and power system; combined cooling; thermal analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctac122 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:18:y:2023:i::p:1-12.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().