EconPapers    
Economics at your fingertips  
 

Estimating Value at Risk and Expected Shortfall Using Expectiles

James W. Taylor

Journal of Financial Econometrics, 2008, vol. 6, issue 2, 231-252

Abstract: Expectile models are derived using asymmetric least squares. A simple formula has been presented that relates the expectile to the expectation of exceedances beyond the expectile. We use this as the basis for estimating the expected shortfall. It has been proposed that the θ quantile be estimated by the expectile for which the proportion of observations below the expectile is θ. In this way, an expectile can be used to estimate value at risk. Using expectiles has the appeal of avoiding distributional assumptions. For univariate modeling, we introduce conditional autoregressive expectiles (CARE). Empirical results for the new approach are competitive with established benchmarks methods. Copyright , Oxford University Press.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (167)

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbn001 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:6:y:2008:i:2:p:231-252

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:6:y:2008:i:2:p:231-252