Estimating Value at Risk and Expected Shortfall Using Expectiles
James W. Taylor
Journal of Financial Econometrics, 2008, vol. 6, issue 2, 231-252
Abstract:
Expectile models are derived using asymmetric least squares. A simple formula has been presented that relates the expectile to the expectation of exceedances beyond the expectile. We use this as the basis for estimating the expected shortfall. It has been proposed that the θ quantile be estimated by the expectile for which the proportion of observations below the expectile is θ. In this way, an expectile can be used to estimate value at risk. Using expectiles has the appeal of avoiding distributional assumptions. For univariate modeling, we introduce conditional autoregressive expectiles (CARE). Empirical results for the new approach are competitive with established benchmarks methods. Copyright , Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (167)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbn001 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:6:y:2008:i:2:p:231-252
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().