Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall
James W. Taylor
Journal of Financial Econometrics, 2008, vol. 6, issue 3, 382-406
Abstract:
We propose exponentially weighted quantile regression (EWQR) for estimating time-varying quantiles. The EWQR cost function can be used as the basis for estimating the time-varying expected shortfall associated with the EWQR quantile forecast. We express EWQR in a kernel estimation framework, and then modify it by adapting a previously proposed double kernel estimator in order to provide greater accuracy for tail quantiles that are changing relatively quickly over time. We introduce double kernel quantile regression, which extends the double kernel idea to the modeling of quantiles in terms of regressors. In our empirical study of 10 stock returns series, the versions of the new methods that do not accommodate the leverage effect were able to outperform GARCH-based methods and CAViaR models. Copyright The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oupjournals.org, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbn007 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:6:y:2008:i:3:p:382-406
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().