EconPapers    
Economics at your fingertips  
 

A Fresh Look at Return Predictability Using a More Efficient Estimator

Travis L Johnson

The Review of Asset Pricing Studies, 2019, vol. 9, issue 1, 1-46

Abstract: I assess time-series return predictability using a weighted least squares estimator that is around 25% more efficient than ordinary least squares (OLS) because it incorporates time-varying volatility into its point estimates. Traditional predictors, such as the dividend yield, perform better in- and out-of-sample when using my estimator, indicating the insignificant OLS estimates may be false negatives driven by a lack of power. Some newer predictors, such as the variance risk premium and the president’s political party, are insignificant when using my estimator, indicating the significant OLS estimates may be false positives driven by a few periods with high expected volatility. Received March 31, 2018; editorial decision September 26, 2018 by Editor Jeffrey Pontiff. Authors have furnished an Internet Appendix and supplementary data and code, which are available on the Oxford University Press Web site next to the link to the final published paper online.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1093/rapstu/ray010 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:rasset:v:9:y:2019:i:1:p:1-46.

Access Statistics for this article

The Review of Asset Pricing Studies is currently edited by Zhiguo He

More articles in The Review of Asset Pricing Studies from Society for Financial Studies
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:rasset:v:9:y:2019:i:1:p:1-46.