Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models
Ying-Ying Lee
No 706, Economics Series Working Papers from University of Oxford, Department of Economics
Abstract:
Partial mean processes with generated regressors arise in several important econometric problems, such as the distribution of potential outcomes with continuous treatments and the quantile structural function in a nonseparable triangular model. This paper proposes a fully nonparametric estimator for the partial mean process, where the second step consists of a kernel regression on regressors that are estimated in the first step. The main contribution is a uniform expansion that characterizes in detail how the estimation error associated with the generated regressor affects the limiting distribution of the marginal integration estimator. The general results are illustrated with three examples: control variables in triangular models (Newey, Powell, and Vella, 1999; Imbens and Newey, 2009), the generalized propensity score for a continuus treatment (Hirano and Imbens, 2004), and the propensity score for sample selection (Das, Newey, and Vella, 2003).
Keywords: Continuous treatment; partial means; nonseparable models; generated regressors; control function (search for similar items in EconPapers)
JEL-codes: C13 C14 C31 (search for similar items in EconPapers)
Date: 2014-05-13
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://ora.ox.ac.uk/objects/uuid:b3619d9d-4434-4c4a-8cb5-29ba40acbab9 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oxf:wpaper:706
Access Statistics for this paper
More papers in Economics Series Working Papers from University of Oxford, Department of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Anne Pouliquen ( this e-mail address is bad, please contact ).