EconPapers    
Economics at your fingertips  
 

Increasing the robustness of uplift modeling using additional splits and diversified leaf select

Frank Oechsle ()
Additional contact information
Frank Oechsle: Karlsruhe Institute of Technology (KIT)

Journal of Marketing Analytics, 2023, vol. 11, issue 4, No 15, 738-746

Abstract: Abstract While the COVID-19 pandemic negatively affects the world economy in general, the crisis accelerates concurrently the rapidly growing subscription business and online purchases. This provokes a steadily increasing demand of reliable measures to prevent customer churn which unchanged is not covered. The research analyses how preventive uplift modeling approaches based on decision trees can be modified. Thereby, it aims to reduce the risk of churn increases in scenarios with systematically occurring local estimation errors. Additionally, it compares several novel spatial distance and churn likelihood respecting selection methods applied on a real-world dataset. In conclusion, it is a procedure with incorporated additional and engineered decision tree splits that dominates the results of an appropriate Monte Carlo simulation. This newly introduced method lowers probability and negative impacts of counterproductive churn prevention campaigns without substantial loss of expected churn likelihood reduction effected by those same campaigns.

Keywords: Churn; Prevention; Uplift modeling; Local errors; Decision trees; Additional splits (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1057/s41270-022-00186-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-022-00186-3

Ordering information: This journal article can be ordered from
http://www.springer. ... gement/journal/41270

DOI: 10.1057/s41270-022-00186-3

Access Statistics for this article

Journal of Marketing Analytics is currently edited by Maria Petrescu and Anjala Krishnen

More articles in Journal of Marketing Analytics from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-022-00186-3