Using Google Trends to predict and forecast avocado sales
Di Wu (),
Zhenning Xu () and
Seung Bach ()
Additional contact information
Di Wu: California State University
Zhenning Xu: California State University
Seung Bach: California State University
Journal of Marketing Analytics, 2023, vol. 11, issue 4, No 7, 629-641
Abstract:
Abstract Making a successful sales prediction or forecasting in retail markets remains challenging despite years of practice and efforts. In this study, we attempt to address this challenge by incorporating the Google Trends search data into traditional time series models that feature geodemographic and industrial-level variables for the purpose of predicting Hass avocado sales in different regions of the United States. The results imply that, for conventional Hass avocados, the use of Google Trends search data can produce better predictions than the models without Google Trends search data. Moreover, using categorized Google Trends search data can improve predictive results even more. However, the models with Google Trends search data fail to improve the predictive power for the consumption of organic Hass avocados. The results suggest that categorized Google Trends search data can be helpful in improving prediction and forecasting for various business stakeholders in general.
Keywords: Google Trends; Predictive analytics; Forecasting; Geodemographics; Data visualization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1057/s41270-023-00232-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-023-00232-8
Ordering information: This journal article can be ordered from
http://www.springer. ... gement/journal/41270
DOI: 10.1057/s41270-023-00232-8
Access Statistics for this article
Journal of Marketing Analytics is currently edited by Maria Petrescu and Anjala Krishnen
More articles in Journal of Marketing Analytics from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().