Forecasting energy demand using neural-network-based grey residual modification models
Yi-Chung Hu () and
Peng Jiang
Additional contact information
Yi-Chung Hu: Fujian Agriculture and Forestry University
Peng Jiang: Chung Yuan Christian University
Journal of the Operational Research Society, 2017, vol. 68, issue 5, 556-565
Abstract:
Abstract Grey forecasting models have taken an important role for forecasting energy demand, particularly the GM(1,1) model, because they are able to construct a forecasting model using a limited samples without statistical assumptions. To improve prediction accuracy of a GM(1,1) model, its predicted values are often adjusted by establishing a residual GM(1,1) model, which together form a grey residual modification model. Two main issues should be considered: the sign estimation for a predicted residual and the way the two models are constructed. Previous studies have concentrated on the former issue. However, since both models are usually established in the traditional manner, which is dependent on a specific parameter that is not easily determined, this paper focuses on the latter issue, incorporating the neural-network-based GM(1,1) model into a residual modification model to resolve the drawback. Prediction accuracies of the proposed neural-network-based prediction models were verified using real power and energy demand cases. Experimental results verify that the proposed prediction models perform well in comparison with original ones.
Keywords: energy demand; forecasting; grey theory; neural network; residual model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1057/s41274-016-0130-2 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:68:y:2017:i:5:d:10.1057_s41274-016-0130-2
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/s41274-016-0130-2
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().