Parameter Estimation and Model Selection in Computational Biology
Gabriele Lillacci and
Mustafa Khammash
PLOS Computational Biology, 2010, vol. 6, issue 3, 1-17
Abstract:
A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.Author Summary: Parameter estimation is a key issue in systems biology, as it represents the crucial step to obtaining predictions from computational models of biological systems. This issue is usually addressed by “fitting” the model simulations to the observed experimental data. Such approach does not take the measurement noise into full consideration. We introduce a new method built on the combination of Kalman filtering, statistical tests, and optimization techniques. The filter is well-known in control and estimation theory and has found application in a wide range of fields, such as inertial guidance systems, weather forecasting, and economics. We show how the statistics of the measurement noise can be optimally exploited and directly incorporated into the design of the estimation algorithm in order to achieve more accurate results, and to validate/invalidate the computed estimates. We also show that a significant advantage of our estimator is that it offers a powerful tool for model selection, allowing rejection or acceptance of competing models based on the available noisy measurements. These results are of immediate practical application in computational biology, and while we demonstrate their use for two specific examples, they can in fact be used to study a wide class of biological systems.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000696 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00696&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000696
DOI: 10.1371/journal.pcbi.1000696
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().