Application-aware deadline constraint job scheduling mechanism on large-scale computational grid
Xiaoyong Tang and
Xiaoyi Liao
PLOS ONE, 2018, vol. 13, issue 11, 1-19
Abstract:
Recently, computational Grids have proven to be a good solution for processing large-scale, computation intensive problems. However, the heterogeneity, dynamics of resources and diversity of applications requirements have always been important factors affecting their performance. In response to these challenges, this work first builds a Grid job scheduling architecture that can dynamically monitor Grid computing center resources and make corresponding scheduling decisions. Second, a Grid job model is proposed to describe the application requirements. Third, this paper studies the characteristics of commercial interconnection networks used in Grids and forecast job transmission time. Fourth, this paper proposes an application-aware job scheduling mechanism (AJSM) that includes periodic scheduling flow and a heuristic application-aware deadline constraint job scheduling algorithm. The rigorous performance evaluation results clearly demonstrate that the proposed application-aware job scheduling mechanism can successful schedule more Grid jobs than the existing algorithms. For successful scheduled jobs, our proposed AJSM method is the best algorithm for job average processing time and makespan.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207596 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07596&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0207596
DOI: 10.1371/journal.pone.0207596
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().