Estimating small-area population density in Sri Lanka using surveys and Geo-spatial data
Ryan Engstrom,
David Newhouse and
Vidhya Soundararajan
PLOS ONE, 2020, vol. 15, issue 8, 1-20
Abstract:
Country-level census data are typically collected once every 10 years. However, conflicts, migration, urbanization, and natural disasters can rapidly shift local population patterns. This study demonstrates the feasibility of a “bottom-up”-method to estimate local population density in the between-census years by combining household surveys with contemporaneous geo-spatial data, including village-area and satellite imagery-based indicators. We apply this technique to the case of Sri Lanka using Poisson regression models based on variables selected using the Least Absolute Shrinkage and Selection Operator (LASSO). The model is estimated in villages sampled in the 2012/13 Household Income and Expenditure Survey, and is employed to obtain out-of-sample density estimates in the non-surveyed villages. These estimates approximate the census density accurately and are more precise than other bottom-up studies using similar geo-spatial data. While most open-source population products redistribute census population “top-down” from higher to lower spatial units using areal interpolation and dasymetric mapping techniques, these products become less accurate as the census itself ages. Our method circumvents the problem of the aging census by relying instead on more up-to-date household surveys. The collective evidence suggests that our method is cost effective in tracking local population density with greater frequency in the between-census years.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237063 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37063&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0237063
DOI: 10.1371/journal.pone.0237063
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().