Forecasting imported COVID-19 cases in South Korea using mobile roaming data
Soo Beom Choi and
Insung Ahn
PLOS ONE, 2020, vol. 15, issue 11, 1-10
Abstract:
As the number of global coronavirus disease (COVID-19) cases increases, the number of imported cases is gradually rising. Furthermore, there is no reduction in domestic outbreaks. To assess the risks from imported COVID-19 cases in South Korea, we suggest using the daily risk score. Confirmed COVID-19 cases reported by John Hopkins University Center, roaming data collected from Korea Telecom, and the Oxford COVID-19 Government Response Tracker index were included in calculating the risk score. The risk score was highly correlated with imported COVID-19 cases after 12 days. To forecast daily imported COVID-19 cases after 12 days in South Korea, we developed prediction models using simple linear regression and autoregressive integrated moving average, including exogenous variables (ARIMAX). In the validation set, the root mean squared error of the linear regression model using the risk score was 6.2, which was lower than that of the autoregressive integrated moving average (ARIMA; 22.3) without the risk score as a reference. Correlation coefficient of ARIMAX using the risk score (0.925) was higher than that of ARIMA (0.899). A possible reason for this time lag of 12 days between imported cases and the risk score could be the delay that occurs before the effect of government policies such as closure of airports or lockdown of cities. Roaming data could help warn roaming users regarding their COVID-19 risk status and inform the national health agency of possible high-risk areas for domestic outbreaks.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241466 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41466&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0241466
DOI: 10.1371/journal.pone.0241466
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().