Bootstrap Inference for Partially Linear Model with Many Regressors
Wenjie Wang
MPRA Paper from University Library of Munich, Germany
Abstract:
In this note, for the case that the disturbances are conditional homoskedastic, we show that a properly re-scaled residual bootstrap procedure is able to consistently estimate the limiting distribution of a series estimator in the partially linear model even when the number of regressors is of the same order as the sample size. Monte Carlo simulations show that the bootstrap procedure has superior �finite sample performance than asymptotic approximations when the sample size is small and the number of regressors is close to the sample size.
Keywords: Bootstrap approximation; Partially linear model; Many regressors asymptotics (search for similar items in EconPapers)
JEL-codes: C12 C26 (search for similar items in EconPapers)
Date: 2021-03-03
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/106391/1/MPRA_paper_106391.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:106391
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter (winter@lmu.de).