A bias test for heteroscedastic linear least squares regression
Eric Blankmeyer
MPRA Paper from University Library of Munich, Germany
Abstract:
A correlation between regressors and disturbances presents challenging problems in linear regression. Issues like omitted variables, measurement error and simultaneity render ordinary least squares (OLS) biased and inconsistent. In the context of heteroscedastic linear regression, this note proposes a bias test that is simple to apply. It does not reveal the size or sign of OLS bias but instead provides a statistic to assess the probable presence or absence of bias. The test is examined in simulation and in real data sets.
Keywords: Linear regression; least squares bias; heteroscedasticity; Fisher transformation (search for similar items in EconPapers)
JEL-codes: C1 C13 C2 C3 (search for similar items in EconPapers)
Date: 2022
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/116605/1/MPRA_paper_116605.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:116605
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter (winter@lmu.de).