EconPapers    
Economics at your fingertips  
 

LSTM based Anomaly Detection in Time Series for United States exports and imports

Sakshi Aggarwal

MPRA Paper from University Library of Munich, Germany

Abstract: This survey aims to offer a thorough and organized overview of research on anomaly detection, which is a significant problem that has been studied in various fields and application areas. Some anomaly detection techniques have been tailored for specific domains, while others are more general. Anomaly detection involves identifying unusual patterns or events in a dataset, which is important for a wide range of applications including fraud detection and medical diagnosis. Not much research on anomaly detection techniques has been conducted in the field of economic and international trade. Therefore, this study attempts to analyze the time-series data of United Nations exports and imports for the period 1992 – 2022 using LSTM based anomaly detection algorithm. Deep learning, particularly LSTM networks, are becoming increasingly popular in anomaly detection tasks due to their ability to learn complex patterns in sequential data. This paper presents a detailed explanation of LSTM architecture, including the role of input, forget, and output gates in processing input vectors and hidden states at each timestep. The LSTM based anomaly detection approach yields promising results by modelling small-term as well as long-term temporal dependencies.

Keywords: Anomaly detection; LSTM; Machine learning; Artificial intelligence; economic trade (search for similar items in EconPapers)
JEL-codes: C54 F13 F15 (search for similar items in EconPapers)
Date: 2023-04-25
New Economics Papers: this item is included in nep-big, nep-cmp, nep-des and nep-int
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/117149/1/LSTM%20ba ... %20and%20imports.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:117149

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:117149