Neural Tangent Kernel in Implied Volatility Forecasting: A Nonlinear Functional Autoregression Approach
Ying Chen,
Maria Grith and
Hannah L. H. Lai
MPRA Paper from University Library of Munich, Germany
Abstract:
Implied volatility (IV) forecasting is inherently challenging due to its high dimensionality across various moneyness and maturity, and nonlinearity in both spatial and temporal aspects. We utilize implied volatility surfaces (IVS) to represent comprehensive spatial dependence and model the nonlinear temporal dependencies within a series of IVS. Leveraging advanced kernel-based machine learning techniques, we introduce the functional Neural Tangent Kernel (fNTK) estimator within the Nonlinear Functional Autoregression framework, specifically tailored to capture intricate relationships within implied volatilities. We establish the connection between fNTK and kernel regression, emphasizing its role in contemporary nonparametric statistical modeling. Empirically, we analyze S&P 500 Index options from January 2009 to December 2021, encompassing more than 6 million European calls and puts, thereby showcasing the superior forecast accuracy of fNTK.We demonstrate the significant economic value of having an accurate implied volatility forecaster within trading strategies. Notably, short delta-neutral straddle trading, supported by fNTK, achieves a Sharpe ratio ranging from 1.45 to 2.02, resulting in a relative enhancement in trading outcomes ranging from 77% to 583%.
Keywords: Implied Volatility Surfaces; Neural Networks; Neural Tangent Kernel; Implied Volatility Forecasting; Nonlinear Functional Autoregression; Option Trading Strategies (search for similar items in EconPapers)
JEL-codes: C14 C45 C58 G11 G13 G17 (search for similar items in EconPapers)
Date: 2023-10-24
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/119022/1/MPRA_paper_119022.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:119022
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().