A modified Kolmogorov-Smirnov test for normality
Zvi Drezner,
Ofir Turel and
Dawit Zerom ()
MPRA Paper from University Library of Munich, Germany
Abstract:
In this paper we propose an improvement of the Kolmogorov-Smirnov test for normality. In the current implementation of the Kolmogorov-Smirnov test, a sample is compared with a normal distribution where the sample mean and the sample variance are used as parameters of the distribution. We propose to select the mean and variance of the normal distribution that provide the closest fit to the data. This is like shifting and stretching the reference normal distribution so that it fits the data in the best possible way. If this shifting and stretching does not lead to an acceptable fit, the data is probably not normal. We also introduce a fast easily implementable algorithm for the proposed test. A study of the power of the proposed test indicates that the test is able to discriminate between the normal distribution and distributions such as uniform, bi-modal, beta, exponential and log-normal that are different in shape, but has a relatively lower power against the student t-distribution that is similar in shape to the normal distribution. In model settings, the former distinction is typically more important to make than the latter distinction. We demonstrate the practical significance of the proposed test with several simulated examples.
Keywords: Closest fit; Kolmogorov-Smirnov; Normal distribution (search for similar items in EconPapers)
JEL-codes: C01 (search for similar items in EconPapers)
Date: 2008-10-22, Revised 2009-03-30
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/14385/1/MPRA_paper_14385.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:14385
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().