Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions
Sudhanshu Mishra ()
MPRA Paper from University Library of Munich, Germany
Abstract:
Our objective in this paper is to compare the performance of the Differential Evolution (DE) and the Repulsive Particle Swarm (RPS) methods of global optimization. To this end, some relatively difficult test functions have been chosen. These functions are: Perm, Power-Sum, Bukin, Zero-Sum, Hougen, Giunta, DCS, Kowalik, Fletcher-Powell and some now functions. Our results show that DE (with the exponential crossover scheme) mostly fails to find the optimum of most of these functions. Of course, it succeeds in case of some functions (perm#2, zero-sum) for very small dimension (m), but begins to falter as soon as the dimension is increased. In case of DCS function, it works well up to m (dimension) = 5. When we use no crossover (only probabilistic replacement) we obtain better results in case of several of the functions under study. Thus, overall, table #2 presents better results than what table #1 does. In case of Perm#1, Perm#2, Zero-sum, Kowalik, Hougen and Power-sum functions the advantage is clear. Whether crossover or no crossover, DE falters when the optimand function has some element of randomness. This is indicated by the functions: Yao-Liu#7, Fletcher-Powell, and “New function#2”. DE has no problems in optimizing the “New function#1”. But the “New function #2” proves to be a hard nut. However, RPS performs much better for such stochastic functions. When the Fletcher-Powell function is optimized with non-stochastic c vector, DE works fine. But as soon as c is stochastic, it becomes unstable. Thus, it may be observed that an introduction of stochasticity into the decision variables (or simply added to the function as in Yao-Liu#7) interferes with the fundamentals of DE, which works through attainment of better and better (in the sense of Pareto improvement) population at each successive iteration.
Keywords: Repulsive particle swarm; Differential evolution; Global optimization; Stochasticity; random disturbances; Crossover; Perm; zero sum; Kowalik; Hougen; Power sum; DCS; Fletcher Powell; multimodal; benchmark; test functions; Bukin; Giunta (search for similar items in EconPapers)
JEL-codes: C61 C63 (search for similar items in EconPapers)
Date: 2006-10-13
New Economics Papers: this item is included in nep-cmp
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/1743/1/MPRA_paper_1743.pdf original version (application/pdf)
Related works:
Working Paper: Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions (2006) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:1743
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().