Precise finite-sample quantiles of the Jarque-Bera adjusted Lagrange multiplier test
Diethelm Wuertz and
Helmut Katzgraber
MPRA Paper from University Library of Munich, Germany
Abstract:
It is well known that the finite-sample null distribution of the Jarque-Bera Lagrange Multiplier (LM) test for normality and its adjusted version (ALM) introduced by Urzua differ considerably from their asymptotic \chi^2(2) limit. Here, we present results from Monte Carlo simulations using 10^7 replications which yield very precise numbers for the LM and ALM statistic over a wide range of critical values and sample sizes. Depending on the sample size and values of the statistic we get p values which signicantly deviate from numbers previously published and used in hypothesis tests in many statistical software packages. The p values listed in this short Letter enable for the first time a precise implementation of the Jarque-Bera LM and ALM tests for finite samples.
Keywords: Jarque-Bera; Lagrange Multiplier (search for similar items in EconPapers)
JEL-codes: C12 (search for similar items in EconPapers)
Date: 2009-12-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/19155/1/MPRA_paper_19155.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:19155
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().