Impact of Model Specification Decisions on Unit Root Tests
Atiq Rehman and
Asad Zaman
MPRA Paper from University Library of Munich, Germany
Abstract:
Performance of unit tests depends on several specification decisions prior to their application e.g., whether or not to include a deterministic trend. Since there is no standard procedure for making such decisions, therefore the practitioners routinely make several arbitrary specification decisions. In Monte Carlo studies, the design of DGP supports these decisions, but for real data, such specification decisions are often unjustifiable and sometimes incompatible with data. We argue that the problems posed by choice of initial specification are quite complex and the existing voluminous literature on this issue treats only certain superficial aspects of this choice. We also show how these initial specifications affect the performance of unit root tests and argue that Monte Carlo studies should include these preliminary decisions to arrive at a better yardstick for evaluating such tests.
Keywords: model specification; trend stationary; difference stationary (search for similar items in EconPapers)
JEL-codes: C01 C15 C22 (search for similar items in EconPapers)
Date: 2009
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/19963/1/MPRA_paper_19963.pdf original version (application/pdf)
Related works:
Journal Article: Impact of Model Specification Decisions on Unit Root Tests (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:19963
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().